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Hydrogen-hydrogen interaction in an electron gas 
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Cenwe <Etudes de Limeil-Vdenton, 94195 Wlleneuve St Georges Cedex, France 

Received 6 May 1993 

Abstract We describe approximate methods for calculating the binding energy of two protons 
in an electron gas. For short interatomic separations, molecular-type binding is dominant; the 
model requires Only onecentre sphericnl calculalions for adding the density effect to lhe binding 
energy of the molecule in vacuum. For large sepamrions. Ihe pair polentials are obtained using 
a superposition of atom-in-jellium densities in a density functional including a new farm of the 
kinetic energy which has several exacl asymptotic behaviours. The binding energy curves are 
presented, for inimiomic distances cavering both the molecular and the asymptotic resions and 
for electron densities in the nnge 2.00 < r, d 6.00. 

1. Introduction 

Hydrogen in its condensed phases is very different from simple metals. Its particularities 
are due to the non-existence of deep core electrons screening the nucleus potential so that 
the conduction electron is not submitted to any orthogonalization constraint. As a result, the 
electron-ion interaction is strong in the range of normal metal densities and can never be 
treated using linear response (LR). This is reflected by the fact that the molecular structure 
of solid H survives under high pressures (2 or 3 Mbar) and that the proton potential can 
bind a level in an electron gas with a density parameter as low as r, = 2.00 [I]. 

Much attention has been paid to the study of the electronic structure of H in an electron 
gas, and its changes with density [2-SI. This interest was motivated by the need to 
understand the experimental properties of metal hydrides [6,7], H solution in metals [8] 
and thermodynamic properties of hydrogen plasmas [9]. Although the simple model of H 
in jellium is a rather primitive picture of real systems, it has proven to be an excellent starting 
point for these studies. Naturally, the attempt to interpret the H-H interaction in various 
hosts has prompted the study of the binding properties of the Hz molecule in an electron gas. 
This has been done first by Norskov [IO] for short interatomic distances ( R  g 2 au). The 
approach used by this worker was to deal with the difference between the Green function of 
the electron gas containing H impurities and that of the unperturbed host. This difference, 
being localized in space, was then calculated self-consistently by expanding the solution of 
the Dyson equation on a localized basis set. Useful information was obtained about the 
oneelectron spectrum, such as the change with density in the bonding and antibonding state 
energies in the range r, = 2.0W.00, and binding energy Q of the molecule as a function 
of the intemuclear distance R.  Obviously the long-range Friedel oscillations cannot be 
accounted for in this model so that the long-range behaviour of 4 ( R  t 2.0 au) was not 
studied. 

In the present work, we address the same problem of the pair interaction of two protons 
in an electron gas, using a completely different approach. We apply two distinct methods. 
One is for the short distances where the Hz molecular structure is dominant, which requires 
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only one-centre calculations for adding the density effect to the binding energy of the 
molecule in vacuum. These calculations can be easily carried out with a standard program 
treating a spharical atom in jellium. The other method is specially aimed at treating large 
internuclear separations, in the spirit of the calculation of ion-ion interaction in simple 
metals. It is based on the use of a new formulation of the kinetic energy functional T[nl. 

In section 2, we describe the model for the short distances R. The results are in good 
agreement with those of previously published work. Section 3 is devoted to the derivation of 
the kinetic energy functional and to its tist for atomic H in jellium. The complete results for 
@ in the whole range of internuclear distances are discussed in section 4, and a conclusion 
is given in section 5 where possible extensions of this work are evoked. 

2. Molecular binding at short internuclear distances 

In the regime of normal metallic densities (2.00 < r, < 6.00), the structure of a HZ molecule 
in jellium shows important similarities to that of the free molecule [lo]. The latter is in 
a bonding paramagnetic ground state for separations R up to 3 au, and a spin-polarized 
state is expected to appear for larger R [ll]. As the paramagnetic state is favoured by an 
increase in electron density, it is likely that spin polarization does not occur for the molecule 
in jellium at distances R c 3 au. In the present section, we restrict our work to this range 
of internuclear separations. 

The ‘exact’ calculation of the self-consistent electronic structure of a molecule in jellium, 
parallelling that commonly done using density-functional theory (DIT) for atomic impurities, 
is a very difficult numerical problem that has never been solved. Approximate methods are 
thus called for. A simple case is that of two weak scatterers, such as two alkali atoms; 
pseudopotentials and LR theory can be used in this case to determine 4 with a quantitative 
accuracy, for internuclear distances larger than twice the core radius. The solution for shorter 
distances remains out of reach but has little practical interest for liquid simple metals. The 
case of Hz is much more interesting with respect to technological applications. An approach 
to this problem has been developed in the framework of the effective-medium theory (EMT) 
[12], which expresses the total embedding energy of the molecule in a jellium of density 
no as 

E,@) is the embedding energy of a single H atom in a jellium of uniform density n. In 
equation (I), it is calculated with an effective jellium density no+ An(R) ,  An(R) being the 
electxon charge density displaced around the proton in a jellium of density no, at a distance 
R equal to the internuclear distance. S(R)  is a correction that we shall not explain here in 
detail. With this correction included, the energy in equation (1) agrees quite well [I21 with 
the results of first-principles calculations solving for the localized part of the one-particle 
Green function [lo]. 

In the following section we describe a different approximate model for calculating the 
Hz binding energy. 

2.1. The model 

We establish an expression for the binding energy defined as 
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where Em(w, 0) is twice the energy of the H atom in vacuum. We start with the free 
molecule binding energy @(R, 0) and then take into account the change in density atfired 
R. We write 

(2) 
assuming that this density change is well approximated,for a f i e d R ,  by the density change 
in a pseudo-molecule energy EL. This pseudo-molecule is an impurity in jellium for which 
only the part of the external potential having a spherical symmetry around the midpoint of 
the bond is retained: 

@ ( R ,  no) = W , O )  + E:(R. no) - E:(R,O) 

V;(r) = -2/iR if r c $R ( 3 4  

VG(r) = -2/r if r 2 i R .  (36) 
E: is readily calculated with a standard program for spherical impurities in jellium [13]. 
This approximation is expected to treat correctly the displaced density for r 2 4R and to 
give a fair account of the Fnedel oscillations at large r ,  but it does not estimate accurately 
the charge pile-up close to the nuclei, and we want to correct for this shortcoming. This is 
done by adding a correction C,(R, no) to E;(R. no). Having in mind the simple picture 
of the molecule as a superposition of two atoms, we write 

C d R ,  no) = 2C,(R,  no) (44 

CdR, no) = E#, no) - E,*(R,no) (46) 

V,*(r) = - l /$R if r < i R  (5a) 

V,'(r) = - l / r  if r =- 4R. (56) 
E:(O, no) is clearly the exact energy &(no) of a H atom in jelllum, so that C,,,(R, no) is 
twice the difference between the exact energy of the atom and that of a pseudo-atom with 
its nucleus shifted from the centre of coordinates (both in jellium). Finally we obtain for @ 

@(Rs no) = @ ( K O )  + E:(R, no) - EL(R,O) + C d R ,  no) - C d R ,  0) (6) 
with C,,,(R, no) defined by equation (4). Once again, all the quantities in equation (6) are 
calculable with a standard program in spherical symmetry. In order to have the exact limit at 
R + CO, E,*(O, no) should be the energy of the ground-state atom in jellium. This atom has 
a doubly occupied bound state and its screening charge in the scattering states integrates to 
- 1 ,  but we do not expect this model to be able to describe the large separations, so that we 
can adopt a definition of E,' more adapted to small separations. It appeared more relevant 
to define E,' for small R as the energy of an excited pseudo-atom with single occupancy of 
the bound level and a free charge integrating to zero. This excited configuration is better 
for approximating the molecular density as a superposition; each atom conhibutes one 
bound electron to the doubly occupied bonding level of the molecule, and the superposed 
scattering states density still integrates to zero as it has to. In fact, calculations show that 
the functions C,(R, no) corresponding to these two atomic configurations ( l s 2  or 1s) remain 
proportional to an excellent accuracy when R increases. Their ratio is equal to the ratio of 
the displaced electron densities An(r = 0) at the centre of coordinates, calculated in the 
two configurations with the nucleus at the centre of coordinates. For instance, at r, = 3.93, 
An(r = 0) = 0.354 for 1s' and 0.296 for 1s. Thus, the magnitude of the correction 
is smaller for the excited configuration. This method for correcting equation (2) clearly 
requires that the atom in jellium carries a bound state; its range of validity is thus limited 
to rs c 2 approximately. 

where E,*(R. no) is the energy of a fictitious H atom in the external potential 
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2.2. Results 

Numerical calculations have been performed according to equation (6) for internuclear 
distances R between 1 and 3 au. Five values of the density parameter have been selected: 
r, = 3.93,2.65 and 2.07 correspond to the electron densities for Na, Mg and AI, respectively, 
r, = 2.95 has been added for comparison with other published theoretical results [14], and 
the value rS = 6.00 is included in order to test the regime of very low densities. In table I' we 
give the values of the embedding energy E:(R, no) of the spherical pseudo-molecule: the 
nucleus-nucleus interaction energy 1 / R  is not included since it plays no role in equation (6) 
once @(R,O) is known. In table 2 are reported the values of the correction C,(R,  no). The 
values of the Hz binding energy in vacuum are from the book of Hirschfelder el al [15]. 
The binding energy curves @ ( R ,  no) are displayed in figure I .  Comparison with the results 
of Norskov [I21 for @(Ro.  no), with RO = 1.4 au, is made in figure 2. Fair agreement is 
found between the two series of results obtained by completely different methods, although 
a slight deviation seems to appear at the highest densities. This gives confidence in the 
method proposed here. 

Table 1. Embedding energy E;(R,  no) of the spherical pseudomolecule. 

-E;(R,  no) (Ryd) for the following r, 

R m 6.00 3.93 2.95 2.65 2.07 

1.0083 4.0213 3.9903 3.9110 3.7758 3.6876 3.3583 
1.2818 3.6557 3.6237 3.5433 3.4061 3.3164 2.9805 
1.5042 3.4030 3,3707 3.2904 3.1529 3.0626 2.7229 
1.7652 3.1478 3.1159 3.0368 2.8998 2.8093 2.4662 
2.0714 2.8940 2.8635 2.7871 2.6515 2.5611 2.2147 
2.4310 2.6451 26175 2.5452 2,4116 2.3214 1.9714 
3.0904 2.2877 2.2681 2.2048 2.0746 1.9843 1.6267 

Table 2. Correction C d R ,  no), as defined in equation (46). 

-C.(R,no) (Ryd) for the following r, 

R M 6.00 3.93 2.95 2.65 2.07 

1.0083 0.1200 0.1235 0.1322 0,1489 0.1586 0.1943 
1.2818 0.1593 0.1639 0.1752 0.1976 0.2100 0.2552 
1.5042 0.1893 0.1945 0.2079 0.2345 0.2497 0.3009 
1,7652 0.2221 0.2278 0.2434 0.2747 0,2925 0.3497 
2.0714 02571 0.2632 0.2811 0.3175 0.3360 0.4005 
2.4310 0.2940 0.3000 0.3204 0.3605 0.3800 0.4518 
3.0904 0.3514 0.3566 0.3813 0.4259 0.4479 0.5274 

3. Ion-ion interaction at large internuclear distances 

When two H atoms located at R, and & in jellium are far apart, the superposition of two 
densities 
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I 
2 R(oo.) 

Figure 1. Binding energy of a Hz molecule in an electron gas, as a function of internuclear 
dismce for the regime of small separations. The lowest curve i s  for the molecule in vacuum. 
The olher curves, with increasing minimum correspond 10 r, = 6,00,3.93,2.95,2.65 and 2.07. 
respectively. 

Figure 2. Binding energy of a Hz molecule in an electron gas. at intemuclear distance 
RO = 1.4 nu. as a function of electron gas density: e. this work, x, from [IZ]: A. from 
~ 4 1 .  

with 4 n ( r )  the charge density displaced by a single H atom in jellium is expected to be a 
good approximation for the molecule. The underlying assumption is that the H-H interaction 
is not strong enough to perturb significantly the electronic structure in the vicinity of each 
nucleus. There are two criteria that can be used to determine the range of validity of such 
an approximation. One is that the bound state of the spherical pseudo-molecule defined in 
the previous section is not deeper than the bound state of the single atom, so that there is 
no additional binding due to overlap. The second criterion is that the density displaced by 
an atom at the site of the other is small compared with the average density no. We have 
always checked that both conditions are met when the model for large R given below is 
applied. 

With the superposition of individual densities, we calculate the molecular energy as 

@ ( R ,  no) = E[no + 4n0 + Anal - E[no + 4 n J  - E[no + Anal + 1/R (8) 
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where E[n] is the total energy functional for the molecule and Ana a short-hand notation 
for An(lr - &I), the individual charge density at site a Equation (8) is useful practically 
if one disposes of an explicit expression for E[n]. The crucial part is the kinetic energy 
functional. In the following sections, we propose a new form for this functional. 

3.1. A new kinetic energy frtnctionnl 

Since DFT [ 16,171 has rigorously established that the total energy of an electronic system 
in an external field is a unique functional of the electron charge density, there has been a 
permanent search for approximate forms of the kinetic energy functional [18]. A physically 
clear procedure to deal with this problem, in the case of a single s-p band of states, is to 
start with the exact expression of the kinetic energy in LR which is quadratic in An and to 
try to improve by adding higher-order effects. The LR form is 

TLR[~] = TTF(n0) + poAn(q = 0) - ;(Zlr)-’ (9Q) 

where TTF(no) is the kinetic energy of the uniform electron gas, identical with the Thomas- 
Fermi (TP) kinetic energy for no. An(q) is the Fourier transform of the displaced density 
An(r)  = n(r)  -no, and 

1 
An(@- W q )  d q  ./ nLRb?)  

n L R ( q )  = -(kF/X*)f(x) (96) 

is the Lindhard response function, k p  the Fermi momenhim and 

j ( x )  = 4 + [(I -x*)/4x11n[1(1 + x ) / ( l -  X)II (9c) 

with x = q / 2 k p .  In equation (90). is the kinetic contribution to the chemical potential 
or Fermi energy fk; .  Equation (9) is valid for any strength of the density gradient, but 
for small deviations from the average density only. Thus it is not applicable to strong 
perturbations such as the proton potential. 

The link between the above functional and well known approximations such as the 
or Von Weiziicker (vw) approximations was clearly established by Jones et [ I@.  The 
low-q limit of equation (94  reproduces the second-order expansion of the TF functional; it 
amounts to replacing f ( x )  by f(0) in equation (9b). On the contrary, the large-q limit of 
the integral term in equation ( 9 ~ )  corresponds to the second-order form of the vw functional, 
i.e. f ( x )  = 1/3x2 in equation (9b). As the TF approximation is the exact limit of the exact 
T[n]  for small density gradients, and the vw approximation is the exact limit for an atomic 
shell of electrons with s-symmetry, attempts have been made to build functionals having 
these correct limits. The simplest is 

TTFG[n] = %(n) + TVW[nl ( 10Q) 

The equation above is different in spirit from the gradient expansion of the kinetic energy, 
where the coefficient in front of the second term is divided by nine, and which deals 
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only with small gradients. A large number of approximations based on equation (loa) 
with a non-constant coefficient in front of the gradient in T w  have been proposed in the 
literature [19]. They have in common two shortcomings: they do not reduce exactly to T,, 
equation (9a), in the LR regime and they do not produce Friedel oscillations in the density 
at large distances. To correct for this, we suggest the following form: 

Equation (1 1) uses the non-linear approximate form TTFG[n] where the q = 0 and q + 00 

limits are correct to all orders and treats the intermediate values of q to second order 
in density by replacing their contribution already included in the leading term by that of 
equation (9a); thus, TTW firstly is correct to all orders at q = 0 and at large q and secondly 
reduces to TLR if the density deviation is small so that it contains the logarithmic singularity 
at q = 2 k ~ .  The functional of equation (1 1) has been successfully applied to the calculation 
of the lattice parameter, bulk modulus, vacancy formation energy, phonon dispersion curve, 
etc, in metallic sodium, using &-initio molecular dynamics [20]. 

It is useful to look at the no + 0 limit of TTM. Let us rewrite this functional in the 
form 

TTFH[nl = TTFG[nl + ATH[n] 

ATH[~] = 5(2Z)r3- A.n(q)g(x)An(q)dq 

(124 

( W  

(124 

g ( x )  is a function having finite limits at x = 0 (g(0) = 0) and at x 3 w(g(00) = -$). 
When the average density no of the material goes to 0, the integral in equation (1%) has 
a finite limit (An(q) itself has a finite limit and g ( x )  may be replaced by g(m)), so that 
ATH[~]  diverges as k;'. This behaviour is incorrect. In order to avoid the divergence and 
to reproduce the finite atomic limit, ATH may be 'delinearized', i.e. replaced by a functional 
containing higher orders in density, but keeping the same lowest-order form and having a 
finite limit for no = 0. The procedure is easier to cany out in r-space. We 'delinearize' 
A ~ ( T )  through the substitution 

kF H 2  J 1 

g(x) = l/f(x) - 1 - 3x2. 

An(r) + (~-'(no)'-~[[no + A ~ ( T ) ] "  - (no)"} 

and choose (Y in order to cancel the divergence at no = 0. This gives (Y = 2. Thus, we 
have the approximation 

TTFM[nl = TTffiIn] + ATM[nl (134 

ATM[~]  = $K F(T)g(r - r')F(r') d r d r '  (13b) s 
32 The no = 0 limit of ATM is now AT, = -%T+p(n). But, at no = 0, the exact limit for a 

single-level system is TVW. So, we should obtain an exact cancellation between ATN and 
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Table 3. Comparison of the kinetic energy contribution to the embedding energy o f  a H alom in 
jellium, in various approximations. All are computed with the electron charge density resulting 
from the self-consistent DFT calculation with the eleclron gas average densify no considemd. 
Wgner exchnnge-comlation energy. TLR is h m  equation (94, T m  from equation (Ion). 
T m  from equations (121, T m  from equsions (13) and 7" from equalions (14). TDW can 
be considered as ' e x d .  

TLR T m  T m  T ~ F M  T m  TDFI 
1, (Ryd) (Ryd) (Ryd) CW) (Ryd) (RW 

6.00 36.347 1.7217 -0.8684 0.7542 0.9519 0.9639 
3.93 11.743 1.7678 -0.0474 0.8572 1.0368 1.0509 
2.95 6.3056 1.8695 0.4848 1.0250 1.1850 1.1987 
2.65 5.1739 1.9388 0.6231 1.1221 1,2738 1.2880 
2.07 3.7350 22077 1.1141 1.4557 1.5879 1.5975 
1.50 3.4273 2.9297 2.0377 2.2508 23591 2.3703 
1.30 3.7166 3,4626 2.6349 2.8099 2.9086 2.9126 
1.00 4.9493 4.9772 4.2375 4.3619 4.4451 4.4252 

TTF at no = 0. We can impose this cancellation by modifying once again the thud and 
higher orders in ATM. The solution is obviously not unique. A simple solution consists in 
multiplying F ( r )  by 

m ( r )  = (no + vAn)/(no + An) 

with v = 5/&. Thus, our final kinetic energy functional is 

TTFN[n] = TTFdn] + ATN[nl 

A T N ~ I  = $K G(r)g(r  - r')G(r') d r  dr' s 
G ( r )  = m ( r ) F ( r ) .  

Let us recall the properties of this functional. TTM is exact to second order in An(q) for 
any q. It coincides with the TF functional for very high densities with small gradients, and 
it is exact in the no = 0 limit for a single-level system. Let us also mention that in this 
latter limit the vw functional is exact not only for the s-symmetry atom, but also for a 
two-centre single-level system: it is easy to check that the vw functional gives the 'exact' 
kinetic energy of the Hz (or H:) molecule with a determinantal singlet or triplet molecular 
wavefunction $(T,  r'), the density n ( r )  to be used in the functional being 

with $ normalized to unity 

3.2. Results for H in jellium 

We have performed 'exact' self-consistent D E  calculations for a proton in jellium, solving 
the KohnSham equations. With the displaced electron charges obtained, we have calculated 
the kinetic energies using the five functionals T,, T m .  T', TTW and TTM. The results 
are shown in table 3 for values of r, from 6.00 to 1.00. The approximations TLR, TTE and 
TTW are rather poor at low densities; they become better at higher densities, as expected. 
TTFM and TTM, which do not diverge at low density like T T ~ ,  are significantly better; the 
exact cancellation of the TF contribution for no = 0 imposed on TTM produces a marked 
improvement. 
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Some commentF, are relevant before considering the Euler equations associated with 
these functionals. Firstly, at the densities considered, r, 2 2.07, there is a bound state in 
the spectrum of H in jellium. This bound state becomes deeper when the density decreases; 
its eigenvalue is -0.0181 Ryd at r, = 6.00, and the average of  I is ( r )  = 3.75 for this 
bound state. Nevertheless, the good results obtained for the kinetic energy in the low-density 
regime prove that Tim is able to treat not only a single-band spectrum, but also a more 
complex spectrum with a shallow bound state. Secondly, although T w  is exact for the 
molecule in vacuum, we have found that it gives total energies which are too low for the 
molecule in jellium at r, = 6.00 and equilibrium separation. The reason is that the bound 
state is much lower for the molecule in jellium than for the free atom, so that TTFN is unable 
to represent this bound state and the continuum together. This means that, although exact at 
no = 0, TTFN does not have the correct density dependence at very low no. The dependence 
on low no is related to the response function of the localized system and involves excited 
states in vacuum. It would be very difficult to include in a kinetic energy functional, but 
a possible further improvement could be to ensure that the total energy satisfies the exact 
relation 

where VH is the Coulomb potential of the system [21]. 

3.3. Euler equation 

Good results for the total energy of atomic H in jellium may be obtained with functionals 
which would not generate correct displaced densities. Before using a given functional 
together with the ‘exact’ single-atom density for calculating the pair interaction with the 
help of equation (8), it is important to realize that the large cancellations which occur in 
such an expression will not be handled correctly if the Euler equation 

8 E [ n ] / S n ( ~ )  = p 

is not satisfied with enough accuracy for the ‘exact’ charge density and the approximate 
E [ n ] .  There are two ways to check that the Euler equation is approximately verified. The 
first is to check that the total energy is variational with respect to small deviations in the 
charge density around the DFT density. The second method is to calculate explicitly the 
functional derivative for the DFT density and to see how much it deviates from p. We have 
tried both methods. 

The stationary property has been studied by calculating the total energy of the H atom 
in jellium with T T ~  and a ‘rescaled’ density: 

Ani ( r )  = AnDn(r) - (A/n)  exp(-2r) + (A /a )hW3 exp(-2hr). (15) 

This form has the advantage of preserving the correct asymptotic form of the electron 
charge that a simply rescaled Ai t~m(hr )  would not have. The rescaled density of 
equation (15) is normalized, and A is the largest possible value in the range &1 such 
that no + Ani(r) is strictly positive everywhere. We show two examples in table 4. At 
r, = 6.00, one obtains the total energy minimum for h. = 1.006(A = 1). with a total 
energy E, = -1,09276 Ryd (Ea is exactly equal to -1.08160) and a kinetic energy 
T = 0.962 07 (T is exactly equal to 0.963 93). At r, = 2.65, the total energy at minimum 
is E, = -1,03323 ( E ,  is exactly equal to -1.028 800) and T = 1.29981 (T is exactly 



equal to 1.28800); this minimum is reached at A = 1.013. We can conclude that the effect 
of rescaling is small, but non-negligible. It indicates that the Euler equation associated with 
TTFN is not exactly satisfied by the exact DFT density. The functional TTM leads to total 
energies that are lower than the exact energies. Nevertheless, the improvement shown by 
TTFN with respect to TTFG is emphasized by the following values: the latter functional gives 
a minimum energy Ea = -0.685 35 at A = 0.65, with a kinetic energy T = 0.924 29. 

Table 4. Minimization of the told energy E[no + An1 - Erno] of a H alom in jellium wilh the 
kinetic energy functional T m ,  using a rescaled charge density. T is (he kinetic energy. h is 
lhc scaling parameter, equation (15). 

rr = 6.00 ,* = 265 

I E(Ryd) ?- ( W )  A E (Ryd) ?- (Ryd) 

0,990 -1.09250 0.93520 0.990 -1.03251 1.25418 
1,000 -1.09272 0.95163 1.000 -1,03299 1.27384 
1.003 -1.09275 0.95699 1.005 -1.033 14 1.28377 
1.006 -1.09276 0.96207 1,010 -1.03321 1.29378 
1.010 -1.09275 0.96887 1.013 -1.03323 1.29981 

1.015 -1.03323 1.30385 
1.020 -1.03317 1.31399 

Now we consider directly the Euler equation associated with the functional TTM. It can 
be written, with n = no + An 

1 
r 

An(r')dr'+ V&) - V&o) = -. 

We have calculated the Fourier transform Q(q)  of the left-hand side of equation (16) with 
the DFT density AnDm, which should be equal to u ( q )  = 4rr/qz if the functional were 
identical with the DFT functional. In figure 3, we display Q(q) / v (q )  at rs = 3.93 and 
compare it with functionals including other kinetic forms. The larger the deviation of the 
ratio from unity, the poorer is the approximation of the kinetic functional. We see that TLR 
is a very poor approximation. TTFO is better but has an important maximum deviation at 
x = 1.2 and goes very slowly towards its asymptotic value at large q .  This asymptotic 
limit equal to 1 reflects the fact that the kinetic functional treats the large gradients of the 
density exactly to all orders (this is not done by TLR where these gradients are taken into 
account to second order only). The functional TTM is excellent for x > 3, but the vicinity 
of x = 1 is still suffering some imperfection. This is because T T ~  is not able to deal with 
the correct phase of the density. When the Euler equation is analysed in detail, one can see 
that the singularity at x = 1 comes from n L R ( q )  only, exactly as in the LR case. The exact 
treatment of the singularity, involved in the asymptotic form of the DFT density, requires a 
functional exact to higher orders. Attempts to include a quasi-exact contribution of order 
three in density in the kinetic functional have been reported in the literature, but they lead 
to considerable practical difficulties 122,231. To conclude this section on kinetic energy 
functionals, let us say that the quality of TTFN, measured by the deviation Q ( q ) / u ( q )  from 
unity, improves when the average density increases, as expected. 
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Figure 3. Test of how the DFI charge density solves the Euler equation associated with various 
kinetic energy functionals: -, Tu: - ,  -, T m :  - - -. Tm, Q(q)  is the effective external 
potential exacted from the Euler equation, in reciprocal space. If should be equal to the bare 
Coulomb potential u(q)  if the functional were exact 

Cl1 - 
3r a 
0 

0.0 

- Cl1 

l o  R(au.) 5 

Figure 4. The H-H interaction in jellium with r, = 6.00. For R < 3 au, the molecular binding 
model is used. and for R > R, = 8 au t h e  large-distances model (-): . . . . . .. between 3 and 
8 au, c w e  obtained by a numerical interpolation. 

3.4. Pair inferaction calculation 

With the functional T ~ N  defined in equation (14). we have calculated the pair interaction 
@(R. no) given in equation (8), using for the single-site density the self-consistent DFT 
An@). The differences between the energy for the overlap of densities and the single site 
energies were calculated successively for the kinetic, Coulomb and exchange-correlation 
contributions. It was checked that rescaling the density, according to equation (15), did not 
allow the energy to decrease in the range of large internuclear distances treated with this 
model. The calculations were done, when possible, in r-space. For instance, an integral of 
the form 

1 J[no + An(r)  + An(lr + R1)ldr 

was transformed to 
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Table 5. 9(R,nn) as defined in equation (8). R, is the minimum internuclear distance for 
which the large-R model is applicable. 

R 2kFR 
@U) (W) r, = 6.00 r, = 3.93 

1.000 -0.06789 0.001 32 
1,250 -0.14662 -0.081 08 
1.500 -0.16200 -0.101 I1 
1.750 -0.13650 -0.08105 
2,000 -0.10070 -0.051 24 
2.250 -0.05529 -0.01206 
2.500 -0,00965 0.02730 
2.750 0.02744 0.058 17 

+ (Wd) 

3.000 0.05827 0.082 16 
2.000 0.07163 
2.500 0.1 19 56 
3.000 0.13270 0.08774 
3.500 0.12718 0.10663 
4.000 0.11241 0.10667 
4.500 0.09338 0.09087 
5.000 0.084 14 0.07252 
5.500 0.05469 0.051 IO 
6.000 0.02603 0.031 34 
6.500 0.005% 0.014 I5 
7.WO -0.00736 0.00059 
7.500 -0.013 I I -0.00876 
8.000 -0.013 82 -0.01 I38 
8.500 -0.011 35 -0.01280 
9.000 -0.00746 -0.00999 
9.500 -0.00321 -0.00548 

10.00 0.00036 -0.001 53 
I050 0.00284 0.00209 
11.00 0.00405 0.00433 
11.50 0,00408 0.00498 
12.00 0.00323 0.00435 
12.50 0.00191 0.00296 
13.00 0.00054 0.00142 
13.50 -0.00070 -0.00034 
14.00 -0,001 50 -0,001 52 
14.50 -0,001 79 -0.002 17 
15.00 -0.001 64 -0.002 15 

R, @U) 8.00 5.80 

E h  + An1 - EInoI (Ryd) -1.08164 -1.08522 
ZFR, (au) 5.12 5.66 

with the help of a change in variable x = [r + RI. The integration limits are U = IR - rl 
and b = R + r. We shall not explain further the details of these calculations, except for 
mentioning that for the term AT&o + An(r)  + An([?- + RI)], and for it only, we made 
an approximation for the function G (equation (144): 

G(r)  = G(no+An(r)+An(lr+Rl))  G(no+An(r))+G(no$A.n(lr+RJ))-G(no).  

(18) 

Without such an approximation, the two-centre double integration involved in A& is very 
difficult to calculate. With equation (18). it is easily estimated in reciprocal space. 
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Table 6. $(R, no) as defined in equation (8). R, is ihe minimum intemuclear distance hor 
which the large-R model is applicable. 

R 
(au) 

I.000 
1.250 
1.500 
1.750 
2.000 
2.250 
2.500 
2.750 
3.000 

4.000 
4.500 
5.000 
5.500 
6.000 
6.5W 
7.000 
7,500 
8.000 
8.500 
9.000 
9.500 

10.00 
10.50 
I1 .oo 
11.50 
12.00 
12.50 
13.00 
13.50 
14.00 
14.50 
15.00 

r, = 295 

0.03379 
-0.057 16 
-0.086 26 
-0.075 67 
-0,05549 
-0.02343 

0.00968 
0.03632 
0.05601 
0.059 83 
0.06422 
0.05659 
0.04385 
0.030 18 
0.01763 
0.005 87 

-0.004 79 
-0.01091 
-0.01168 
-0.01055 
-0.007 14 
-0.00250 

0.00092 
0.003 28 
0,00469 
0,00439 
0.003 I2 
0.001 81 
0.00040 

-0.001 15 
-0.002 13 
-0.002 22 

4.60 
5.99 - 1.050 36 

r, = 2.65 

0.03987 
-0.05448 
-0.089 07 
-0.08348 
-0.06461 
-0.03397 
-0.00256 

0.021 29 
0.03908 

0.044 75 
0.04536 
0.03770 
O.M8 17 
0.01 7 93 
0.005 80 

-0,004 19 
-0.01006 
-0.011 81 
-0.01044 
-0.00728 
-0.003 12 

0.00050 
0.003 27 
0.004 59 
0.00457 
0.00351 
0.001 93 
0.OOO 30 

-0,001 18 
-0.00208 
-0.00232 

4.20 
6.08 

-1.019 04 

rr = 2.07 

0.031 35 
-0.073 72 
-0, I I762 
-0.12015 
-0.11067 
-0.08803 
-0.063 12 
-0.03933 
-0.01707 

0.000 23 
0.011 36 
0.00840 

-0.001 53 
-0.007 40 
-0.01006 
-0.00949 
-0.00735 
-0.00371 
-0.00056 

0.002 18 
0.003 72 
0.004 09 
0.003 36 
O.OM 13 
0.00065 

-0.00080 
-0.001 71 
-0.002 14 

3.70 
6.86 

-0.883 31 

4. Complete Results 

The pair interaction is given in tables 5 and 6 for the whole range of R-values. The origin 
of energies is as in equation (8), so that 4 ( R ,  no) goes to zero at infinite separations. This 
choice implies a shift in the values calculated in section 2 for R G 3, where the molecular 
binding energy was measured with respect to the energy of two isolated a t "  in vacuum. 
As already mentioned, the model used for large distances is not applicable in the range 
R G R,. R,  is also shown in tables 5 and 6. R ,  is determined as the intemuclear distance 
for which the bound level energy of the pseudo-molecule defined in section 2.1, equation (3), 
equals that of the H atom (very shallow) at the same no. We have seen in the atomic case 
that the kinetic functional TTM is able to treat the corresponding spectrum correctly, bound 
and free parts as a whole. With this R,, the H displaced density is such that An(r)/no is 
smaller than 0.12 at r, = 6.00 and 0.22 at r, = 2.07 for all r > fR,. 
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Figure 5. Same as figure 4, but for rr = 3.93. Two other approximtions for the large distances 
me also shown: - - -, &,equation (19); - . -. h, equation (21). 

Figure 6. Same as figure 4. but for rr = 2.95, 

1c 5 R(a.u.1 
Figure 7. Same as figure 4, but for rs = 2.65. Figure 8. Same as figure 4. but for r, = 2.07. 

For distances between 3 au and R,, @ has been determined using numerical 
interpolation. As shown in figures 4-8, there is no difficulty in joining smoothly the results 
of the two models obtained separately in regions R < 3 and R 2 R,. This is particularly 
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obvious at r, = 2.95 and 2.65, where R,  is not very far fiom 3. At r, = 2.07, the results 
given by the molecular model seem slightly too low for a perfect match with the curve 
resulting from the second model. This can be related to the fact shown in figure 2 where 
it appeared that our molecular binding energy was slightly underestimated with respect to 
the results of Norskov [12]. Thus, we think that rs = 2.07 is the lowest electron density 
parameter which can be treated by our molecular binding model. 

In order to demonstrate the effect of using an elaborate kinetic energy functional instead 
of more simple approximations, we have also displayed in figure 5 (r* = 3.93) the pair 
interaction calculated as follows: 

(a) using the full LR form of the pair interaction, i.e. 

M?) = v(9) + v(q)x(q)v(q) (19) 

where x ( q )  is the density response function given by 

including local field effects through X = dV,,(no)/dno; 
(b) with an approximation frequently used in the theory of simple metals, where a 

pseudopotential w(q) ,  which would give the D m  charge density in the LR, replaces the bare 
proton potential 4 9 ) :  

db(9) = v(9)  f W(q)X(q)W(q) (21) 

W ( 9 )  = AnDFr(q)/X(q) (22) 

These two approximations and &, differs very markedly from the calculation with 
TTFN and would be much more difficult to reconcile with the molecular model. 

5. Conclusion 

We have reported a study of Hz binding in an electron gas, using two methods, each of them 
being well suited to one of the two regimes of internuclear separations. The first treats the 
region of molecular binding ( R  < 3 au) where the electronic structure is reminiscent of the 
free-molecule structure. The density dependence is accounted for by adding contributions 
which are readily calculated in spherical symmetry (i.e. with a standard numerical program) 
to the free-molecule binding energy. The results are in good agreement with those obtained 
in other work. The second method, which treats large internuclear distances, assumes that an 
overlap of the charge density displaced by a single atom in jellium is a good approximation 
for the molecule and makes use of a new kinetic energy functional described at le& in 
this paper. The binding energy curves resulting from these two models in their respective 
domains match easily. 

This work may have a number of extensions. First, the methods developed here can 
be straightforwardly applied to the case where the uniform background contains a cavity, 
which is believed to be more realistic for describing substitutional impurities. Second, the 
effect of temperature can be included without theoretical difficulty for application to H 
plasmas 1241. Also, the functional T T ~ N  might be of some use for people doing molecular 
dynamics calculations with a ‘true’ density functional [20]. Finally, this functional could 
provide a new approximation in the theory of simple liquid metals, especially in cases where 
non-linear effects are expected to play some role in pair interactions 12.51. 
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