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Hydrogen-hydrogen interaction in an electron gas
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Centre d'Etudes de Limeil-Valenton, 94195 Villereuve St Georges Cédex, France

Received 6 May 1993

Abstract. We describe approximate methods for calculating the binding energy of two protons
in an electron gas, For short interatomic separations, molecular-type binding is dominant; the
model requires only one-centre spherical calcnlations for adding the density effect to the binding
energy of the molecule in vacuum. For large separations, the pair potentials are obfained using
a superposition of atom-in-jellium densities in a density functional including a new form of the
Idnetic energy which has several exact asymptotic behaviours, The binding energy curves are
presented, for interatomic distances covering both the molecular and the asymptotic regions and
for electron densities in the range 2.00 < r; < 6.00.

1. Introduction

Hydrogen in its condensed phases is very different from simple metals. Its particularities
are due to the non-existence of deep core electrons screening the nucleus potential so that
the conduction electron is not submitted to any orthogonalization constraint. As a result, the
electron—ion interaction is strong in the range of normal metal densities and can never be
treated using linear response (LR). This is reflected by the fact that the molecular structure
of solid H survives under high pressures (2 or 3 Mbar) and that the proton potential can
bind a level in an electron gas with a density parameter as low as r; = 2.00 [1].

Much attention has been paid to the study of the electronic structure of H in an electron
gas, and its changes with density [2-5]. This interest was motivated by the need to
understand the experimental properties of metal hydrides [6,7], H solution in metals [8]
and thermodyramic properties of hydrogen plasmas [9]. Although the simple model of H
in jellium is a rather primitive picture of real systems, it has proven to be an excellent starting
point for these studies. Naturally, the attempt to interpret the H-H interaction in various
hosts has prompted the study of the binding properties of the H, molecule in an electron gas.
This has been done first by Norskov [E0] for short interatomic distances (R < 2 au}. The
approach used by this worker was to deal with the difference between the Green function of
the electron gas containing H impurities and that of the unperturbed host. This difference,
being localized in space, was then calculated self-consistently by expanding the solution of
the Dyson equation on a localized basis set. Useful information was obtained about the
one-electron spectrum, such as the change with density in the bonding and antibonding state
energies in the range r; = 2.00-4.00, and binding energy ¢ of the molecule as a function
of the internuclear distance R. Obviously the long-range Friedel oscillations cannot be
accounted for in this model so that the long-range behaviour of ¢ (R > 2.0 au} was not
studied.

In the present work, we address the same problem of the pair interaction of two protons
in an electron gas, using a completely different approach. We apply two distinct methods.
One is for the short distances where the H molecular structure is dominant, which requires
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only one-centre calculations for adding the density effect to the binding energy of the
melecule in vacuum. These calculations can be easily carried out with a standard program
treating a spherical atom in jellium. The other method is specially aimed at treating large
internuclear separations, in the spirit of the calculation of ion—ion interaction in simple
metals. [t is based on the use of a new formulation of the kinetic energy functional T'{xn].

In section 2, we describe the model for the short distances R. The results are in good
agreement with those of previously published work. Section 3 is devoted to the derivation of
the kinetic energy functional and to its test for atomic H in jellium. The complete results for
¢ in the whole range of internuclear distances are discussed in section 4, and a conclusion
is given in section 5 where possible extensions of this work are evoked.

2. Molecular binding at short internuclear distances

In the regime of normal metallic densities (2.00 £ r; € 6.00), the structure of a H; molecule
in jellium shows important similarities to that of the free molecule [10]. The latter is in
a bonding paramagnetic ground state for separations R up to 3 au, and a spin-polarized
state is expected to appear for larger R [11]. As the paramagnetic state is favoured by an
increase in electron density, it is likely that spin polarization does not occur for the molecule
in jelllum at distances R < 3 au. In the present section, we restrict our work to this range
of internuclear separations.

The ‘exact’ calculation of the self-consistent electronic structure of a molecule in jellium,
parallelling that commonly done using density-functional theory (DFT) for atomic impurities,
is a very difficult numerical problem that has never been solved. Approximate methods are
thus called for. A simple case is that of two weak scatterers, such as two alkali atoms;
psendopotentials and LR theory can be used in this case to determine ¢ with a quantitative
accuracy, for internuclear distances larger than twice the core radius. The solution for shorter
distances remains out of reach but has little practical interest for liquid simple metals. The
case of Hs is much more interesting with respect to technological applications. An approach
to this problem has been developed in the framework of the effective-medium theory (EMT)
[12], which expresses the total embedding energy of the molecule in a jellium of density
Ng as

En(R, ng) = 2Ex(no + An(R)) + 8(R). (H

E,(n) is the embedding energy of a single H atom in a jellium of uniform density r. In
equation (1), it is calculated with an effective jellium density np+ An(R), An(R) being the
eleciron charge density displaced around the proton in a jellium of density ng, at a distance
R equal to the internuclear distance. 8(R) is a correction that we shall not explain here in
detail. With this correction included, the energy in equation (1) agrees quite well {12] with
the results of first-principles calculations solving for the localized part of the one-particle
Green function [10],

In the following section we describe a different approximate model for calculating the
H; binding energy.

2.1. The model

We establish an expression for the binding energy defined as

¢(R’ no) = Em(R, ?10) - Em(OO, 0)
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where Ep, (oo, ) is twice the energy of the H atom in vacuum. We start with the free-
molecule binding energy ¢ (R, 0) and then take into account the change in density az fixed
R. We write

#(R, no) = ¢(R, 0) + E; (R, ng) — E(R, 0) (2)

assuming that this density change is well approximated, for g fixed R, by the density change
in a pseudo-molecule energy E;,. This psendo-molecule is an impurity in jellium for which
only the part of the external potential having a spherical symmetry around the midpoint of
the bond is retained:

Vi) =-2/3R  ifr <iR (3)

Vi) = =2/r if r > iR (36)

E} is readily calculated with a standard program for spherical impurities in jellium [13],
This approximation is expected to treat correctly the displaced density for r > %R and to
give a fair account of the Friedel oscillations at large r, but it does not estimate accurately
the charge pile-up close to the nuclei, and we want to correct for this shortcoming. This is
done by adding a correction C(R, no) to E} (R, np). Having in mind the simple picture
of the molecule as a superposition of two atoms, we write

Cm(R, no) = 2C4(R, no) (4a)
Ca(R, no}y = £;(0, no) — EY(R, np) (4b)
where E} (R, ng) is the energy of a fictitious H atom in the external potential
Viry=-1iR  ifr<iR (3a)
VE(r) = —1/r if r > IR. (5b)

EX(0, ng) is clearly the exact energy Ey{no) of a H atom in jelltum, so that Cn(R, np) is
twice the difference between the exact energy of the atom and that of a pseudo-atom with
its nucleus shifted from the centre of coordinates (both in jellivm). Finally we obtain for ¢

#(R, no) = ¢(R,0) + EL(R, no) — E;(R, 0) + Cm(R, 5o} ~ Ca(R, 0} (6)

with Ci(R, rp) defined by equation (4). Once again, all the quantities in equation (6) are
calculable with a standard program in spherical symmetry. In order to have the exact limit at
R — o0, E;(0, ng) should be the energy of the ground-state atom in jellium. This atom has
a doubly occupied bound state and its screening charge in the scattering states integrates to
—1, but we do not expect this model to be able to describe the large separations, so that we
can adopt a definition of E} more adapted to small separations. It appeared more relevant
to define E} for small R as the energy of an excited pseudo-atom with single occupancy of
the bound level and a free charge integrating to zero. This excited configuration is better
for approximating the molecular density as a superposition; each atom contributes one
bound electron to the doubly occupied bonding level of the molecule, and the superposed
scattering states density still integrates to zero as it has to. In fact, calculations show that
the functions C,(R, #y) corresponding to these two atomic configurations (1s2 or 1s) remain
proportional to an excellent accuracy when R increases. Their ratio is equal to the ratio of
the displaced electron densities An(r = ) at the centre of coordinates, calculated in the
two configurations with the nucleus at the centre of coordinates. For instance, at 7, = 3.93,
An{r = 0) = 0.354 for 1s? and 0.296 for 1s. Thus, the magnitude of the comection
is smaller for the excited configuration. This method for comrecting equation (2) clearly
requires that the atom in jellium carries a bound state; its range of validity is thus limited
to r; < 2 approximately.
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2.2. Results

Numerical calculations have been performed according to equation (6) for internuclear
distances R between 1 and 3 au. Five values of the density parameter have been selected:
rs = 3.93, 2.65 and 2.07 correspond to the electron densities for Na, Mg and Al, respectively,
rs = 2.95 has been added for comparison with other published theoretical results {14], and
the value r; = 6.00 is included in order to test the regime of very low densities. In table 1 we
give the values of the embedding energy E} (R, ng) of the spherical pseudo-molecule; the
nucleus—nucleus interaction energy 1/R is not included since it plays no role in equation (6)
once ¢ (R, 0) is known. In table 2 are reported the values of the correction C,(R, ng). The
values of the H, binding energy in vacuum are from the book of Hirschfelder et af [15].
The binding energy curves ¢(R, ng) are displayed in figure 1. Comparison with the results
of Norskov [12] for ¢(Rg, no), with Ry = 1.4 au, is made in figure 2. Fair agreement is
found between the two series of results obtained by completely different methods, although
a slight deviation seems to appear at the highest densities. This gives confidence in the
method proposed here.

Table 1. Embedding energy E% (R, no) of the spherical pseudo-molecule.

~Ex{R, np) (Ryd) for the following r,

R o0 6.00 3.93 295 2.65 2.07

1.0083 40213 3.9903 39110 37758 3.6876 3.3583
1.2818 3.6557 3.6237 3.5433 3.4061 33164 2.9805
1.5042 3.403¢ 3.3707 3.2904 3.1529 3.0626 2.7229
1.7652 3.1478 3.1159 3.0368 2.8998 2.8093 2.4662
2.0714 2.8940 2.8635 2,787 2.6515 25611 22147
24310 2.645) 26175 2.5452 24116 2.3214 1.8714
3.0004 2.2877 2.2681 2.2048 2.0746 1.9843 1.6267

Table 2, Correction Cy(R, ng), as defingd in equation {45).

=Ca(R, ng} (Ryd) for the following ry

R ) 6.00 3.93 2,95 2.65 2.07

1.0083 0.1200 0.1235 0.1322 0.1489 0.1586 0.1943
1.2818 0.1593 0.1639 0.1752 0.1976 0.2100 0.2552
1.5042 0.1893 0.1945 0.2079 0.2345 0.2497 0.300%
1.7652 0.2221 0.2278 0.2434 02747 0.2925 0.3497
20714 02571 0.2632 0.2811 0.3175 0.3360 0.4005
24310 0.2940 0.3000 0.3204 0.3605 0.3800 04518
3.0504 0.3514 0.3566 0.3813 0.4259 0.4479 0.5274

3. Jon-ion interaction at large internuclear distances

When two H atoms located at R, and Ry in jellium are far apart, the superposition of two
densities

Ann(r) = An(jr — Ry|) + An(jr — Ry|) )
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Figure 1. Binding energy of a Ha molecule in an electron gas, as a function of internuclear
distance for the regime of small separations. The lowest curve is for the molecule in vacuum.
The other curves, with increasing minimum, correspond o #; = 6,00, 3.93, 2.95, 2.65 and 2,07,
respectively.

PR:.n,) (V)

002 n,(auw)

000 001

Figure 2. Binding energy of a Hz molecule in an electron gas, at internuclear distance
Ry = 1.4 au, as a function of electron gas density: @, this work;, x, from [12]); &, from
[14].

with An{r) the charge density displaced by a single H atom in jellium is expected to be a
good approximation for the molecule. The underlying assumption is that the H—H interaction
is not strong enough to perturb significantly the electronic structure in the vicinity of each
nucleus. There are two criteria that can be used to determine the range of validity of such
an approximation. One is that the bound state of the spherical pseude-molecule defined in
the previous section is not deeper than the bound state of the single atom, so that there is
no additional binding due to overlap. The second criterion is that the density displaced by
an atom at the site of the other is small compared with the average density nyg. We have
always checked that both conditions are met when the maodel for large R given below is
applied.
With the superposition of individual densities, we calculate the molecular energy as

G(R, ng) = Elng + Ang + Anp]l — E[ng + Ang] — Elno + Anp] + 1/R (8)
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where E[n] is the total energy functional for the molecule and An, a short-hand notation
for An(]r — R,]), the individual charge density at site a. Equation (8) is useful practically
if one disposes of an explicit expression for E{n]. The crucial part is the kinetic energy
functional, In the following sections, we propose a new form for this functional.

3.1. A new kinetic energy functional

Since DFT [16, 17] has rigorously established that the total energy of an electronic system
in an external field is 2 unique functional of the electron charge density, there has been a
permanent search for approximate forms of the kinetic energy functional [18]. A physically
¢clear procedure to deal with this problem, in the case of a single s—p band of states, is to
start with the exact expression of the kinetic energy in L& which is quadratic in Ar and to
try to improve by adding higher-order effects, The LR form is

1
Mir(g)
where Trr{rp) is the kinetic energy of the uniform electron gas, identical with the Thomas—

Fermi (TF) kinetic energy for ng. An{qg) is the Fourier fransform of the displaced density
An(r) = n(r) — nyg, and

Tzl = Tre(no) + oAn(g = 0) — L(2m)~3 f An(g) An(g) dg (%)

Mir(g) = —(ke/n) F(x) (9b)

is the Lindhard response function, kp the Fermi momentum and
Fx) =3+ [ — x»)/4x1nl[(1 + x) /(1 — )] (9¢)

with x = ¢q/2ke. In equation (9a), o is the kinetic contribution to the chemical potential
or Fermi energy -;-k% Equation (9) is valid for any strength of the density gradient, but
for small deviations from the average density only. Thus it is not applicable to strong
perturbations such as the proton potential.

The link between the above functional and well known approximations such as the TF
or Von Weiziicker (vw) approximations was clearly established by Jones et al {18]. The
low-g limit of equation (9a) reproduces the second-order expansion of the TF functional; it
amounts to replacing f(x) by F(0) in equation (95). On the contrary, the large-g limit of
the integral term in equation (9a) corresponds to the second-order form of the vW functional,
ie. f(x) = 1/3x? in equation (9b). As the TF approximation is the exact limit of the exact
T[n) for small density gradients, and the VW approximation is the exact limit for an atomic
shell of electrons with s-symmeiry, attempts have been made to build functionals having
these correct limits. The simplest is

Tregln] = Fre(n) + Tywln] (10a)

Tre(n) = f 23a%) 30 dr (105)
2

Tywln] = %f 'i:l—dr. (10¢)

The equation above is different in spirit from the gradient expansion of the kinetic energy,
where the coefficient in front of the second term is divided by nine, and which deals
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only with small gradients. A large number of approximations based on equation (10z)
with a non-constant coefficient in front of the gradient in Tyw have been proposed in the
literature {19]. They have in common two shoricomings: they do not reduce exactly to Tiz,
equation (9a), in the LR regime and they do not produce Friedel oscillations in the density
at large distances. To correct for this, we suggest the following form:

1 1
Mir(g) Mrra(g)

Equation {11) uses the non-linear approximate form Trrg{n] where the ¢ =0 and ¢ — 00
limits are correct to all orders and treats the intermediate values of g to second order
in density by replacing their contribution already included in the leading term by that of
equation {9a); thus, Trpy firstly is correct to all orders at ¢ = 0 and at large g and secondly
reduces to i if the density deviation is small so that it contains the logarithmic singularity
at ¢ = 2kr. The functional of equation (11) has been successfully applied to the calculation
of the lattice parameter, bulk modulus, vacancy formation energy, phonon dispersion curve,
etc, in metallic sodium, using ab-initic molecular dynamics [20].

It is useful to look at the ng — Q limit of Tppa. Let us rewrite this functional in the
form

Trentn) = Trrgln) ~ 3(27)7 f An{q) ( ) An{g})dg. (5

Tyeuln] = Tregln] + ATy(n] (12a)
ATy[n) = %(2:'1')‘3:—; f An(g)g(x)An(g)dg (12b)
glx) = 1/f(x) —1-3x% (12c)
g(x) is a function having finite limits at x = 0 (g(0) = 0) and at x — co(g(o0) = —§).

When the average density ng of the material goes to 0, the integral in equation (128) has
a finite limit {An(g) itself has a finite limit and g(x) may be replaced by g(co)), so that
ATy[n] diverges as k. !, This behaviour is incorrect. In order to avoid the divergence and
to reproduce the finite atomic limit, ATy may be ‘delinearized’, i.e. replaced by a functional
containing higher orders in density, but keeping the same lowest-order form and having a
finite limit for ng = 0. The procedure is easier to carry out in r-space. We ‘delinearize’
An(r) through the substitution

An(r) = o' (ro) "*{[no + An(r)]* ~ (ng)*}

and choose o in order to cancel the divergence at ng = 0. This gives & = g. Thus, we

have the approximation

Tremlnl = Tregln] + ATuln] (13a)

ATwln) = 1K f F(ryg(r — v)F(r') dr dr’ (13b)
with K = $(37%)*/* and

F(r) = §n(r)"’® — (n0)*/°]. (13¢)

The no = 0 limit of ATy is now ATy = —32 Tyg(n). But, at ng = 0, the exact limit for 2
single-level system is Tyw. So, we should obtain an exact cancellation between ATy and
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Tabile 3. Comparison of the kinetic energy contribution to the embedding energy of a H atom in
jellium, in various approximations. All are computed with the electron charge density resuiting
from the seif-comsistent peT calculation with the electron gas average density np considered,
Wigner exchange-correlation energy. Tig is from equation (9a), Ttrg from equation (10a),
Treu from equations (12}, Trew from equations (13) and Tren from equations (14). Tprr can
be considered as ‘exact’.

Tir Tro T Trem T Torr
rs {Ryd) (Ryd) (Ryd} Ryd) (Ryd) Ryd)

6.00 36.347 17217 —0.8684 0.7542 0.9519 0.9639
3.93 11.743 17678  —0.0474 0.8572 1.0368 1.0509
295 6.3056 1.8695 0.4848 1.0250 1.1850 1.1987
2,65 5.1739 1.9388 0.6231 1.1221 1.2738 1.2380
2.07 3.7350 22077 1.1141 1.4557 1.5879 1.5975
1.50 3.4273 2.9297 2.0377 2.2508 2.3591 2.3703
1.30 3.7166 3.4626 2.6349 2.8099 2.9086 29126
1.00 4.9493 4.9772 42375 43619 4.4451 44252

Tre at np = 0. We can impose this cancellation by modifying once again the third and
higher orders in ATy. The solution is obviously not unique. A simple solution consists in
multiplying F(r) by

m(r) = (np + vAn)/(no + An)
with v = 5/4/32. Thus, our final kinetic energy functional is

Trenln] = Trrgln] + ATnin] (144)
ATyIn] = 1K f G(r)g{r — vYG{r")dr dv’ (14a)
G(r) = m{r)F(r). (14¢)

Let us recall the properties of this functional. Trey is exact to second order in An(g) for
any gq. It coincides with the TF functional for very high densities with small gradients, and
it is exact in the no = 0 limit for a single-level system. Let us also mention that in this
latter limit the vw functional is exact not only for the s-symmetry atom, but also for 2
two-centre single-level system; it is easy to check that the vw functional gives the ‘exact’
kinetic energy of the Hy {or HI) molecule with a determinantal singlet or triplet molecular
wavefunction ¢ (r, '), the density n{s) to be used in the functional being

alr) = th,tr“(r,r')\lf(r,r’) dr'
with i+ normalized to unity.

3.2, Results for H in jellium

We have performed ‘exact’ self-consistent DTF calculations for a proton in jellium, solving
the Kohn—Sham equations. With the displaced electron charges obtained, we have calculated
the kinetic energies using the five functionals Tyr, Treg, Treu, Trrv and Trey. The results
are shown in table 3 for values of ry from 6.00 to 1.00. The approximations Ty g, Treg and
Trpy are rather poor at low densities; they become better at higher densities, as expected.
Trem and Trey, which do not diverge at low density like Typy, are significantly better; the
exact cancellation of the TF contribution for ng = 0 imposed on Trpy produces a marked
improvement.
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Some comments are relevant before considering the Euler equations associated with
these functionals. Firstly, at the densities considered, r; > 2.07, there is a bound state in
the spectrum of H in jellium. This bound state becomes deeper when the density decreases;
its eigenvalue is —0.0181 Ryd at r;, = 6.00, and the average of r is {r) = 3.75 for this
bound state. Nevertheless, the good results obtained for the kinetic energy in the low-density
regime prove that Tygy is able to treat not only a single-band spectrum, but also a more
compiex spectrum with a shallow bound state. Secondly, although Ty is exact for the
molecule in vacuum, we have found that it gives total energies which are too low for the
molecule in jellium at ry = 6.00 and equilibrium separation. The reason is that the bound
state is much lower for the molecule in jellium than for the free atom, so that Trey is unable
to represent this bound state and the continuum together. This means that, although exact at
ng = 0, Ty does not have the correct density dependence at very low ny. The dependence
on low ny is related to the response function of the localized system and involves excited
states in vacuum. It would be very difficult to include in a kinetic energy functional, but
a possible further improvement could be to ensure that the total energy satisfies the exact
relation

dEa(ng) _

d / Vu(r) dr

where Vy is the Coulomb potential of the system [21].

3.3. Euler equation

Good results for the total energy of atomic H in jellium may be obtained with functionals
which would not generate correct displaced densities. Before using a given functional
together with the ‘exact’ single-atom density for calculating the pair interaction with the
help of equation (8), it is important to realize that the large cancellations which occur in
such an expression will ot be handled comectly if the Euler equation

SE[r]/8n(r) =

is not satisfied with enough accuracy for the ‘exact’ charge density and the approximate
Eln]. There are two ways to check that the Euler equation is approximately verified. The
first is to check that the total energy is variational with respect to small deviations in the
charge density around the DFT density. The second method is to caleulate explicitly the
functional derivative for the DFT density and to see how much it deviates from p.. We have
tried both methods.

The stationary property has been studied by calculating the total energy of the H atom
in jellium with Treny and a ‘rescaled’ density:

An,(r) = Anprr(r) — (A/m) exp(—2r) + (A/Jr)l"3 expl(—2Air). (155

This form has the advantage of preserving the correct asymptotic form of the electron
charge that a simply rescaled Anper(Ar) would not have, The rescaled density of
equation (15) is normalized, and A is the largest possible value in the range 0-1 such
that g + An,(r) is strictly positive everywhere. We show two examples in table 4. At
rs; = 6.00, one obtains the total energy minimum for A = 1.006(A = 1), with a total
energy £, = —1.09276 Ryd (E, is exactly equal to —1.08160) and a kinetic energy
T = (0.96207 (T is exactly equal to (.96393). At r; = 2.63, the total energy at minimum,
is E, = —1.03323 (E, is exactly equal to —1.028 800) and T = 1.29981 (T is exactly
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equal to 1.28800); this minimum is reached at A = 1.013. We can conclude that the effect
of rescaling is small, but non-negligible. It indicates that the Euler equation associated with
Tren is not exactly satisfied by the exact DFT density. The functional Trey leads to total
energies that are lower than the exact energies. Nevertheless, the improvement shown by
Tren with respect to Tyrg is emphasized by the following values: the latter functional gives
a minimum energy E, = —0.68535 at A = 0.65, with a kinetic energy T = 0.92429.

Table 4. Minimization of the total energy E{ng + An]— E[ng] of a2 H atom in jellium with the
kinetic energy functional Tren, vsing a rescaled charge density. T is the kinetic energy. A is
the scaling parameter, equation (15).

re = 6.00 r, = 2.65

A E (Ryd} T (Ryd) A £ (Ryd) T (Ryd}

0990 -—1.09250 0.93520 0990 -1.03251 125418
1.000 109272 0.95163 1000  —1.03299 1.27384
1003 -1.00275 0.95699 1.005 -1.033 14 128377
1.006 —1.09276 0.96207 1,010 —-1.03321 129378
Lo —1.09275 0.968 87 1013 -1.03323 1.29981

1.015 -1.03323 1.303 85

1020 -1.03317 1.31399

Now we consider directly the Euler equation associated with the functional Trgy. It can
be written, with n = ng + An

Val\2 1V 8G(r) e
'—‘—) i KW g(?"—‘T)G(T)dT

1 2/3 I
Ko =+ g (5]

1
+ f ARGy dr' + Vie(n) — Vie(ng) =
P

~ | —

(16)

We have calculated the Fourier transform Q(g) of the left-hand side of equation (i6) with
the DET density Anppr, which should be equal to v(g) = 4m/q? if the functional were
identical with the DFT functional. In figure 3, we display Q(g)/v(g) at r; = 3.93 and
compare it with functionals inchuding other kinetic forms. The larger the deviation of the
ratio from unity, the poorer is the approximation of the kinetic functional. We see that Tig
is a very poor approximation. Tyrg is better but has an important maximum deviation at
x = 1.2 and goes very slowly towards its asymptotic value at large ¢. This asymptotic
limit equal to 1 reflects the fact that the kinetic functional treats the large gradients of the
density exactly to all orders {this is not done by Tig where these gradients are taken into
account to second order only)., The functional Trey is excellent for x > 3, but the vicinity
of x =1 is still suffering some imperfection. This is because Trpy is not able to deal with
the correct phase of the density. When the Euler equation is analysed in detail, one can see
that the singularity at x = 1 comes from Il r(g) only, exactly as in the LR case. The exact
treatment of the singularity, involved in the asymptotic form of the DFT density, requires a
functional exact to higher orders. Attempts to include a quasi-exact contribution of order
three in density in the kinetic functional have been reported in the literature, but they lead
to considerable practical difficulties [22,23]. To conclude this section on kinetic energy
functionals, let us say that the quality of Tren, measured by the deviation Q{g)/v(g) from
unity, improves when the average density increases, as expected,
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Figure 3. Test of how the DFT charge density solves the Euler equation associated with various
kinetic energy functionals: ——, TgN; ~— « —, TrEgs ~ ~ — TLr. Q(g) is the effective external

patential extracted from the Euler equation, in reciprocal space. It should be equal to the bare
Coulomb potential v(g) if the functional were exact.
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Figure 4. The H-H interaction in jelliom with r; = 6.00. For R < 3 au, the molecular binding
model is used, and for R 2> Ry = 8 au the large-distances mode! (—): --.... . between 3 and

3 au, curve obtained by a numerical interpolation.

3.4, Fair interaction calculation

With the functional Tygy defined in equation (14), we have calculated the pair interaction
${R,np) given in equation (8), using for the single-site density the seMf-consistent DFT
An(r). The differences between the energy for the overlap of densities and the single site
energies were calculated successively for the kinetic, Coulomb and exchange-correlation
contributions. It was checked that rescaling the density, according to equation (15), did not
allow the energy to decrease in the range of large internuclear distances treated with this
model. The calculations were done, when possible, in r-space. For instance, an integral of

the form

[ Jlng + Anr(r) + Anilr + RD1dr
was transformed to

27 [ b
= f r drf xdx J[ng + An(r) + An(x)] (17
0 a
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Table 5. $(R, ng} as defined in equation (8). Ry is the minimum internuclear distance for
which the large-R model is applicable,

R e R @ (Ryd)

{au) (au} rs =600 rs =393
1.000 —0.06789 0.00132
1,250 —-0.14662  -0.08108
1.500 —-(.16200 =0.10111
1.750 —-0,13650  —0.08105
2,000 —0.10070 -0.05124
2.250 -0.05529 —0.01206
2.560 —-0.00965 0.027 30
2.750 0.02744 0.05817
3.000 0.05827 0.08216

2.000 0.07163
2.500 0.11956
3.000 0.13220 0.08774
3.500 0.12718 0.10663
4.000 0.11241 0.10667
4.500 0.09338 0.09087
5.000 0.084 14 0.07252
5.500 0.05469 0.05110
6.000 0.02603 0.03134
6.500 0.00596 001415
7.000 -0.00736 0.000 59
7.500 -001311 000876
8.000 -0.01382 -0.01138
8500 -0.01135 -0.01280
9.000 -0.00746 -0.00999
9500 —000321 =0.00548
10.00 0.00036  —0.00%53
10.50 0.002 84 0.00209
11.00 0.00405 0.00433
11.50 0.00408 0.00498
12.00 £.00323 0.00435
12.50 0.00191 0.00296
13.00 0.00054 0.00142
1350 —-0.00070 -0.00034
1400 —-000150 —0.00152
1450 000179 =0.00217
1500  -0.00164 —-0.00215

Rp (aw) 8.00 5.80
2kp R (an) 512 5.66

Elrg + An] — Elng] (Ryd) -1.08160 -1.08322

with the help of a change in variable x = |[r 4+ RJ|. The integration limits are a = |R — r|
and b = R + r. We shall not explain further the details of these calculations, except for
mentioning that for the term ATwIno + An(r) 4+ An(|r 4+ R|)], and for it only, we made
an approximation for the function G (equation (14¢)):

G(r) = Glno+ An(r) + An(lr+ R)) = Glng+ Anlr)) + Glng + An{jr + R)) — Glng).
(18)

Without such an approximation, the two-centre double integration involved in ATy is very
difficult to calculate. With equation (18), it is easily estimated in reciprocal space.
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Table 6. ¢(R, np) as defined in equation {8). Ry is the minimum internuclear distance for
which the targe-R model is applicable.

R 2R (Ryd)

(au) (au) rs =2.95 r, =265 rs = 2.07
1.000 0.03379 0.03987 0.03135
1.250 -~0.05716  —0.05448 -0.07372
1.500 -0.08626 008307 -0.11762
1.750 007567 008348 -—0.12015
2.000 -0.05549 ~006461 =0.11067
2.250 -0.02343 003397 —0.08803
2.500 0.00968 -0.00256 ~0.06312
2.750 0.03632 002129  —0.03933
3.000 0.03601 003908 -0.01707

4.000 0.05983

4.500 0.064 22 0.04475

5.000 0.056 59 0.04536

5.500 0.04385 0.03770

6.000 0.03018 0.02817 0.00023

6.500 0.01763 0.01793 0.01136

7.000 0.00587 0.005 80 0.00840

7500 000479 000419 000153

8.000 001091 -0.01006 -0.00740

8500 -~0.01168 ~001181 -0.01006

9.000 -0.01055 -001044 -0.00949

9.500 -0.00714 -0.00728 -0.00735
1000  -0.00250 -0.00312 -0.00371
10.50 0.00092 0.00050  --0.00056
11,00 0.00328 0.003 27 0.00218
11.50 0.004 69 0.004 59 0.00372
12.00 0.004 39 0.004 57 (.004 09
12.50 0.00312 0.00351 0.00336
13.00 0.001 81 0.00193 0.00213
13.50 0.00040 0.00030 0.00065
1400 000115 -0.00118 —0.00080
1450 000213 —0.00208 —0.00171
1500 000222 —-0.00232 -0.00214

Run (20) 4,60 420 370
e R (au) 5.99 6.08 6.86
Elng + An] — Elng] (Ryd) -105036 —101904 —0.88331

4, Complete Results

The pair interaction is given in tables 5 and 6 for the whole range of R-values. The origin
of energies is as in equation (8), so that ¢(R, rg) goes to zero at infinite separations. This
choice implies a shift in the values calculated in section 2 for R < 3, where the molecular
binding energy was measured with respect to the energy of two isolated atoms in vacuum.
As already mentioned, the model used for large distances is not applicable in the range
R € Rm. R, is also shown in tables 5 and 6. Ry, is determined as the internuclear distance
for which the bound level energy of the pseudo-molecule defined in section 2.1, eguation (3},
equals that of the H atom (very shallow) at the same ng. We have seen in the atomic case
that the kinetic functional Trey is able to treat the corresponding spectrum correctly, bound
and free parts as a whole. With this Ry, the H displaced density is such that Anr{r)/ng is
smaller than .12 at ry = 6.00 and 0.22 at r; = 2.07 for all 7 > 1Ry,



444 F Perrot

& ‘\.,.
/ : ’a
\ e |
e Tl
- '..\. S~

R

-

—— T

: 1

1 i
10 R{au.)
Figure 5. Same as figure 4, but for rg = 3,93, Two other approximations for the farge distances
are also shown: — - —, ¢,, eguation (19); — - —, ¢, equation (21).
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Figure 7. Same as figure 4, but for ry = 2.65.

Figure 8. Same as figure 4, but for ry = 2.07.

For distances between 3 au and Ry, ¢ has been determined using numerical
interpolation. As shown in figures 4-8, there is no difficulty in joining smoothly the results
of the two models obtained separately in regions R < 3 and R > R,,. This is particularly
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obvious at r; = 2.95 and 2.65, where R is not very far from 3. At r; = 2.07, the results
given by the molecular model seem slightly too low for a perfect match with the curve
resulting from the second model. This can be related to the fact shown in figure 2 where
it appeared that our molecular binding energy was slightly underestimated with respect to
the results of Norskov [12]. Thus, we think that ry = 2.07 is the lowest electron density
parameter which can be treated by our molecular binding model.

In order to demonstrate the effect of using an elaborate kinetic energy functional instead
of more simple approximations, we have also displayed in figure 5 (ry = 3.93) the pair
interaction calculated as follows:

(a) using the fuli LR form of the pair interaction, i.e.

Palq) = v{g) + v(g)x(q)v(g} (19)
where x(gq) is the density response function given by
x (g} = Mr(g)/{1 — [v(g) + X]TLr(g)} (20

including local field effects through X = d V. (ng)/dno;

(b) with an approximation frequently used in the theory of simple metals, where a
pseudopotential w(g), which would give the DFT charge density in the LR, replaces the bare
proton potential v{g):

Pu(g) = vig) + wig)x (g)wig) | 21)
w(g) = Anprr(g)/x(q) (22)

These two approximations ¢, and ¢, differs very markedly from the calculation with
Tren and would be much more difficult to reconcile with the molecular model.

5. Conclusion

We have reported a study of Hz binding in an electron gas, using two methods, each of them
being well suited to one of the two regimes of internuclear separations. The first treats the
region of molecular binding (R < 3 an) where the electronic structure is reminiscent of the
free-molecule structure. The deasity dependence is accounted for by adding contributions
which are readily calcuiated in spherical symmetry (i.e. with a standard numerical program)
to the free-molecule binding energy. The results are in good agreement with those obtained
in other work. The second method, which treats large internuclear distances, assumes that an
overlap of the charge density displaced by a single atom in jellium is a good approximation
for the molecule and makes use of a new kinetic energy functional described at length in
this paper. The binding energy curves resulting from these two models in their respective
domains match easily.

This work may have a number of exiensions. First, the methods developed here can
be straightforwardly applied to the case where the uniform background contains a cavity,
which is believed to be more realistic for describing substitutional impurities. Second, the
effect of temperature can be included without theoretical difficulty for application to H
plasmas [24]. Also, the functional Trey might be of some use for people doing molecular
dynamics calculations with a ‘tree’ density functional [20]. Finally, this functional could
provide a new approximation in the theory of simple liquid metals, especially in cases where
non-linear effects are expected to play some role in pair interactions [25].
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